

國 立 清 華 大 學

碩士論文

適用於高可用度叢集錯誤轉移事件之 TCP 效能

增進機制

TCP Performance Enhancement Schemes in

Stateful HA Cluster for Failover Events

系 所 別： 資訊工程研究所

姓名學號： 吳彥敏 (Yen-Min Wu) 9562564

指導教授： 黃能富 博士 (Prof. Nen-Fu Huang)

中 華 民 國 九十七 年 八 月

 II

ABSTRACT
An HA cluster is a clustering system which provides critical network services

with high level of availability by redundant hardware and failover procedure. When

the active cluster node fails, the backup node would take over the responsibility of

active node through failover process. In this way, single point of failure is removed,

and overall system downtime is then effectively reduced.

TCP composes more than 90% of Internet traffic [1], and is most widely used to

carry critical service. However, the behaviors of TCP flows are not considered within

the design of HA cluster. During failover period, the packet losses experienced by

active connections are treated as congestion signals by TCP congestion control, and

thus reducing the flow sending rate. Also, follow the design of TCP, after failover, the

interrupted flow could not resume its transmission until another retransmission

timeout.

In this thesis, we propose a local recovery mechanism for high availability

cluster (HALR). At ingress/egress switches of HA cluster, the pass-through packets

are selectively cached and locally resent after failover process. In this way, the

interrupted flows could be restarted upon failover completion. On the other hand, for

the active/active cluster, or the clusters with strings of unequal bandwidth, to address

the potential bandwidth bottleneck problem after string failure, the post-failover rate

control (PFRC) mechanism is further proposed. The mechanism could keep active

connections transfer in a steady manner even with insufficient available bandwidth.

From our simulation results, when HALR is deployed, the unused flow time

could be eliminated. Moreover, when system bandwidth bottleneck appears after

failover, utilizing the rate control mechanism could achieve steady system throughput,

fair bandwidth allocation among flows, and bottleneck buffer usage reduction.

 III

中文摘要
高可用度叢集(HA Cluster)，是一種針對關鍵性的服務保障其高可用性的叢

集系統，其主要保護的對象，為提供關鍵服務的伺服器，稱為叢集節點。藉由備

援軟硬體的提供，叢集節點可以組成一個群組。當群組中任何一個關鍵元件故障

時，服務並不會就此中斷，而是經由故障轉移機制來啟動備援。這樣的備援機制

可有效移除單點失敗，並降低系統停止提供服務的時間。

TCP 傳輸控制協議，在網路上是最普遍，也是最常使用在關鍵服務的通訊協

定。但是，TCP 連線的行為特質並未被考慮在高可用度叢集的設計中。故障轉移

期間，TCP 封包將會漏失，而這些掉落的封包則被擁塞控制機制當成網路擁塞的

訊號，並錯誤的啟動擁塞控制機制，降低傳輸速率。也使得故障轉移後，被中斷

的連線無法立即重新開始傳輸。

在本篇論文中，我們提出一種近端回復的機制。此機制乃是藉由位於高可用

度叢集兩端的負載平衡交換機來對通過其上的封包做選擇性近端快取，並在故障

轉移完成後立即送出快取的封包，如此一來，即可達成有效率的近端回復機制。

另外，對於雙作業模式的叢集，或是擁有不對稱鏈路頻寬的叢集，考量到故障轉

移後可能發生頻寬不足的問題，我們接著提出了故障轉移後的速率控制機制，來

保證錯誤轉移後 TCP 流量可持續穩定的傳輸。

模擬結果顯示，採用近端回復機制的叢集，能夠在故障轉移事件發生時，有

效地避免浪費系統可用卻未被使用的時間。若進一步考慮故障轉移後，頻寬不足

的情況，在加上速率控制元件之後，網路效能即可在僅受到輕微之影響的狀態

下，達成故障轉移後 TCP 連線之間公平的頻寬利用，較穩定的系統吞吐率，並

有效降低位於瓶頸的緩衝區使用量。

 IV

 TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION ...1
CHAPTER 2 BACKGROUND AND RELATED WORK...4

2.1 High Availability Cluster Modes..4
2.2 TCP Congestion Control ..6
2.3 Local Loss Recovery Mechanism..7
2.4 Rate Control Scheme ...8

CHAPTER 3 HIGH AVAILABILITY LOCAL RECOVERY MECHANISM DESIGN.........9
3.1 Overview..9
3.2 Design of HALR Switch.. 11
3.3 Packet Caching Policies...12
3.4 Memory Requirements for Packet Caching.................................14

CHAPTER 4 OBSERVATION: INFLUENCES OF HALR ON TCP BEHAVIOR15
4.1 Timeline around a Failover Event..15
4.2 Analysis..16

CHAPTER 5 MODELING FAILOVER FLOW COMPLETION TIME19
5.1 Additional Time Delay from a Failover.......................................19
5.2 TCP Short Flow Models ..21
5.3 TCP Long Flow Models...22

CHAPTER 6 EMPLOYING RATE CONTROL AFTER FAILOVER EVENTS................26
6.1 Rate Control Motivation ..26
6.2 Design of Rate Control Scheme...27
6.3 Rate Enforcement Method ...28

CHAPTER 7 SIMULATION RESULTS ...30
7.1 Simulation Configurations ...30
7.2 Analysis on Improvements of HALR ..31
7.2.1 Simulation Topology of HALR..31
7.2.2 Failover Time vs. Flow Completion Time31
7.2.3 Failover Time vs. Retransmission Timeout34
7.3 Model Validation..36
7.4 Improvements of Post-Failover Rate Control38
7.4.1 Throughput Analysis..39
7.4.2 Per-flow Fairness ...43
7.4.3 Bottleneck Buffer Size ...45

CHAPTER 8 DISCUSSION & CONCLUSION...48
REFERENCES ...50

 V

LIST OF FIGURES
Figure 1. The structure of a high availability cluster ...2
Figure 2. AB mode of Dual-String Stateful HA Cluster ..5
Figure 3. AA mode of Dual-String Stateful HA Cluster ..6
Figure 4. Unused Flow Time ...10
Figure 5. HALR Switch Design... 11
Figure 6. Timeline around a failover event..16
Figure 7. Congestion Window Evolution for Case 2: Data Drop Flows18
Figure 8. Congestion Window Evolution for Case 3: SYN Drop Flows18
Figure 9. Unused Flow Time vs. Flow Down Time...20
Figure 10. The integration of Rate Control Module on LBS.......................................28
Figure 11. Simulation topology ...30
Figure 12. Flow completion times vs. flow arriving time (failover = 0.5 sec)33
Figure 13. Flow completion times vs. flow arriving time (failover = 3 sec)33
Figure 14. Flow completion times vs. flow arriving time (failover = 5 sec)33
Figure 15. Number of timeouts of the flows in Case 2: TCP Reno.35
Figure 16. Number of timeouts of the flows in Case 2: TCP NewReno......................35
Figure 17. Number of timeouts of the flows in Case 2: TCP SACK.35
Figure 18. Short flow model validation ...37
Figure 19. Long flow model validation ...38
Figure 20. Throughput vs. time: without rate control ..40
Figure 21. Throughput vs. time: with rate control ...40
Figure 22. Aggregate throughput comparison (a) during simulation (b) zoomed-in. ..42
Figure 23. Per flow fairness: without rate control ...44
Figure 24. Per flow fairness: with rate control ..44
Figure 25. Bottleneck buffer size (buffer limit= 1500 pkts) ..46
Figure 26. Bottleneck buffer size (buffer limit= 750 pkts) ..46

 VI

LIST OF TABLES
Table I. Parameter list for modeling...19

 1

Chapter 1

INTRODUCTION

From users’ perspective, there is no difference between the service outages due

to the networks and due to the servers. As a consequence, any near-source or

near-destination single-point failure would hinder the service quality. According to [2],

when network failures are considered, service availability is often as low as 99%,

meaning that a server is out of service for about 15 min a day in average. To increase

service availability, a High-availability (HA) cluster solution is often deployed. An

HA cluster is a cluster of network devices or servers which could eliminate

single-point of failure (SPOF) by redundant nodes and failover procedures. Thus, HA

clusters provide better levels of availability fro critical services, such as four-9s or

five-9s.

A typical structure of an active/backup HA cluster is illustrated in Figure 1. In

order to maintain states of active connections in the system, state replication messages

are exchanged between cluster nodes which provide the same function during normal

operations. Heartbeat messages are periodically sent between ingress/egress switches

in order to probe link/node failure within cluster. Whenever a failure is detected, the

backup node would take over the responsibility of previous active node through the

failover process. The failover process shorten the total system down time from node

repair time, i.e., minutes to hours, to failure detection plus failover time, i.e., less than

10 seconds. This could strongly improve the availability of protected services.

 2

FW

State-replication traffic
Pass-through traffic

Server

Internet

Ingress
switch

Client

Egress
switch

FW IPS

IPS

AV

AV

Figure 1. The structure of a high availability cluster

When failure happens on a cluster node, the failover process is required. Since

the occurrence of cluster failovers could not be avoided, this results in temporary

service unavailability. During this short period of system down time, packet drops are

inevitable. Since the protocol used for critical services are mainly TCP flows, they are

the target of failover protection. However, TCP treats packet drops as signals of

congestion, and therefore lower the flow’s sending rate to mitigate the level of

congestion in the Internet [3]. This may falsely impact the performance of active

flows interrupted by failover events. Observed from our previous experiments, for

short-lived TCP flows, it is the series of retransmission timeouts which dominate the

failover-affected flow completion time. In this way, the effects on TCP connections

caused by failover process shouldn’t be ignored.

Moreover, observed from the fact that the failover process between cluster nodes

usually means total system bandwidth reduction after failover events, unless for each

active string, the cluster has a fully dedicated backup string with equal bandwidth.

When the bandwidth capacity is reduced, the flows may face a bandwidth capacity

bottleneck, which would result in a saturated buffer, unsteady throughput, and

unfairness between flows competing for the same queue. To address this problem, an

 3

adaptive rate control mechanism is required upon failover events to improve flow

fairness.

In this thesis, we focus on performance enhancement of TCP flows interrupted

by the failover process of an HA cluster. From the experiment results in our work, we

have a better understanding of TCP congestion control behaviors under failover events

with different failover times and packet drop types, such as doubling retransmission

timeout value after timeout events and reduced window size. The enhancing

mechanism is then designed through analyzing these behaviors.

In the following discussion, we consider HA clusters with two cluster nodes,

which is the minimum requirement to provide redundancy. However, please be noted

that the proposed mechanisms could also be applied to HA clusters with N (N>2)

nodes.

The rest of this work is organized as follows: Chapter 2 introduces the

backgrounds and related works, such as enhancing TCP flow performance by local

recovery or rate control mechanisms. In Chapter 3, we propose the HALR design and

explain it in detail; while in Chapter 4, we describe the characteristics of TCP flows

during failover events. By extending current TCP flow models, in chapter 5, we

capture the effects of failovers and local recovery mechanism in terms of flow

completion time. Furthermore, Chapter 6 shows the rate control mechanism which

protects post-failover flow performance. Then, the simulation results are presented in

Chapter 7. Finally, the conclusion and future work are given in Chapter 8.

 4

Chapter 2

BACKGROUND AND RELATED WORK

This chapter reviewed the related works of protecting TCP flows during failover

events of HA Clusters. First, the background of HA Clusters and the characteristics of

TCP congestion control are provided for better understanding the behavior of TCP

flows during failover. Also, TCP enhancing mechanisms, such as explicit local

recovery and rate enforcement in different network environments, are reviewed. These

works are described in the following sections, respectively.

2.1 High Availability Cluster Modes

There are various HA techniques for different applications and network

infrastructures. In this work, two major modes of standard HA clusters, active/backup

(AB) mode and active/active (AA) mode [4], are considered and shown in Figure 2

and Figure 3. AB mode provides an idle node for redundancy, while AA mode is for

load balancing as well as redundancy.

A cluster in AB mode is composed of one primary node (PN) and at least one

idle backup node (BN). Through the dedicated link (the replication link) between the

cluster nodes, the replicated states are used to reflect the active flows on the

pass-through link. A cluster in AA mode is composed of two or more active nodes

(ANs) sharing the pass-through flows, both playing the role of message sender and

receiver in replication management. The configuration in AA mode removes a

possible throughput bottleneck and is superior in the areas of load balancing

capability with better resource utilization and a lower throughput penalty in the case

of failure.

In general, an AN/PN can be backed up by a number of cluster nodes. However,

 5

in this work, we consider only the single backup configuration which is often used in

practice.

In Figure 2 and Figure 3, on the boundary of clustering nodes, there is a pair of

load-balancing switches (LBSes). In AA mode, the LBSes are responsible of

distributing traffic loads evenly across two pass-through strings as well as ensuring

that a connection passes through the same string in bi-direction. On the other hand, in

AB mode, LBSes direct the traffic to a dedicated string. If a string failure is detected,

LBSes redirect the traffic to the other string.

Internal LBS

External LBS

Internal Network

PN BNBN

Internet

HA ClusterHA Cluster

Internal LBS

External LBS

Internal Network

PN BNBN

Internet

HA ClusterHA Cluster

Internal Network

PN BNBN

Internet

Internal NetworkInternal Network

PN BNBN

InternetInternet

HA ClusterHA Cluster

Figure 2. AB mode of Dual-String Stateful HA Cluster

 6

Internal Network

Internal LBS

ANAN ANAN

External LBS

Internet

HA ClusterHA Cluster

Internal NetworkInternal Network

Internal LBS

ANAN ANAN

External LBS

InternetInternet

HA ClusterHA Cluster

Figure 3. AA mode of Dual-String Stateful HA Cluster

2.2 TCP Congestion Control

TCP is a reliable transport protocol and it treats a packet loss as a signal of

network congestion. In TCP, packet loss recovery is integrated into the mechanism of

congestion control. For a TCP sender, a packet retransmission can be triggered by a

retransmission timeout, 3-duplicate ACKs for fast retransmission, or a partial ACK

during fast recovery.

TCP Reno and NewReno are the most popular implementations in the Internet [5,

6]. The fast recovery algorithm of Reno is optimized for the case when a single packet

is dropped. However, Reno still suffer from unnecessary timeouts when multiple

packet losses within a window of data [7, 8]. As the result, NewReno [9] is proposed

to address this problem by modifying the mechanism of fast recovery. Moreover, to

address the problem of consecutive losses when the dropped segments are

 7

non-contiguous, SACK [10] is developed. The receiver uses SACK option fields in

TCP packets to notify the sender which contiguous blocks of packets are received

successfully. The sender utilizes the block information to determine which segments

are lost. Therefore, only the missing packets are retransmitted, and they could be

retransmitted within a single RTT. In the case of a system failure and failover process,

multiple packet losses are likely to occur. However, Reno, NewReno, and SACK

perform exactly the same slow-start algorithm after a retransmission timeout. A

timeout has a significant impact on TCP performance because it indicates a period of

idle time; and the congestion window size (cwnd) is set to one segment when a

timeout event is triggered. Finally, note that the value of retransmission timeout (RTO)

should be no less than 1 sec [11]. Thus, when a failover process forces connections to

timeout, the connection idle time will be at least 1 sec.

2.3 Local Loss Recovery Mechanism

In order to address the problem of packet loss due to lossy links and handoff,

various TCP enhancement schemes have been proposed for wireless networks [12-15].

The group of Snoop-like protocols does not attempt to change or modify the TCP

protocol itself. Based on link-layer knowledge of disconnection and duplicate ACKs

for packet losses, TCP packets are buffered, removed, or delayed by a wire-wireless

gateway.

In wireless environments, the disconnections shorter than RTO are considered as

a less frequent case. In contrast, our works focus on the influences of a range of small

failover time (less than 12 sec) and the memory requirements in high-speed networks.

Furthermore, these Snoop-like solutions relied primarily on simulation and testbed

experiments. Also, analytical modeling for the impact of handoff events on TCP

performance was not presented in the previous works.

 8

2.4 Rate Control Scheme

To control the sending rate of TCP flows by edge devices in different network

environments, several mechanisms are proposed [16-22]. The main purpose of rate

control is to make each active flow obtain their fair share of available bandwidth. To

determine a proper sending rate under current network condition, these schemes

require bandwidth monitors on input rate and target rate. Then, available bandwidth is

fairly allocated to active connections.

There are two major approaches on allocating bandwidth: window sizing [16, 19,

20] and ACK pacing [18, 21]. The former controls the TCP sender’s sending rate by

modifying receiver’s advertised window size in TCP acknowledgments, while the

latter takes effect by buffering ACK packets in middle devices and release them

according to the proper rate.

In this thesis, in order to address the potential bandwidth bottleneck after cluster

failover, a window sizing approach is adopted at LBSes to control the flow rate. We

select the approach of window sizing for its simplicity, and it does not require any

additional queue to buffer ACK packets.

 9

Chapter 3

HIGH AVAILABILITY LOCAL RECOVERY MECHANISM

DESIGN

3.1 Overview

The main purpose of HALR is to eliminate idle time for flow transfers after

failover. To achieve this goal, local kick-start mechanism should be deployed. We

place this mechanism on the load balancing switches, because those switches keep

track of the status of active node/string. HALR has the following two key operations:

the first is to selectively cache the incoming packets during the normal status; the

second is to locally resend the cached packets after the failover is completed.

For loss recovery, TCP regards all packet losses as notifications of traffic

congestions, and then retransmits the unacknowledged segments for end-to-end

reliability. However, when cluster failure happens between two TCP endpoints,

retransmissions are not useful until the failover is finished. If the failover time,

denoted as , is quite long, the TCP back-off algorithm may continues to

double RTO until a threshold is reached or an ACK packet arrives. This mechanism

causes a severe unused flow time (UFT) problem even the cluster is ready after a

failover, the retransmission of the TCP sender is not performed until the scheduled

time. This would result in temporarily low link utilization. In this work, we define an

UFT as the time between the failover termination and the scheduled time for the next

packet retransmission as shown in Figure 4.

 10

Figure 4. Unused Flow Time

For a short flow (say less than 500 ms), a failover-related TCP timeout may

significantly lengthen the flow completion time. As a basic performance metric from

end-user point of view, the flow completion time of a connection is its total

transmission time. Obviously, lower latencies indicate better TCP performance. On

the other hand, for a long flow with high-bandwidth, a failover-related TCP timeout

causes a throughput degradation because the connection would take several round trip

times (RTTs) for achieving the original throughput. For minimizing these

failover-related effects, besides a small , it is necessary to minimize the

possibility of TCP timeouts and the time delay caused by a failover. Thus, we propose

the HALR scheme to enhance TCP performance over a failover event.

 11

3.2 Design of HALR Switch

The basic idea behind the HALR scheme is that if packets are lost due to the

transmissions across the cluster string during a failover, the edge switches (i.e., HALR

switches) take the responsibility to recover these lost packets. In Figure 5, the HALR

switch keeps track of state information from every pass-through TCP packets and

saves certain numbers of unacknowledged data packets and ACKs into Local Cache

(LC). Once the failover is finished, the switch performs local recovery by resending

immediately the cached packets to the TCP endpoints that may be waiting for

timeouts. After resending, cached packets could be released.

Figure 5. HALR Switch Design

As a result of resending, TCP implementations simply regard the resent data

packet as a delayed segment of the connection and the resent ACKs fire up a quick

retransmission immediately. Ideally, the resent packets minimize the possibility of

issuing a timeout signal at the TCP sender and eliminate an unnecessary UFT. On the

other hand, if the was too long (e.g., over 9 min) and the connection was

 12

already closed, the TCP sender would ignore the resent packets.

3.3 Packet Caching Policies

The caching policies for the HALR scheme can be classified into two types

according to whether or not the packet is going to traverse the cluster in the rest

transmission.

First, for the packets leaving the cluster, the HALR switch replaces the buffered

packet if the new packet has a higher acknowledgement number. When performing

local recovery, each (ACK) packet is resent for at least 3 times for triggering the fast

retransmission at TCP sender. If the fast retransmission is triggered before the

scheduled RTO (i.e., a short), the TCP sender can thus retransmit

immediately the lost packet indicated by 3-duplicate ACKs. On the other hand, if a

timeout has already occurred in the TCP sender due to a longer , cwnd has

also been set to one segment and then 3-duplicate ACKs are not useful to keep a

larger cwnd.

Second, for the packets not yet entering the cluster string, the basic idea is to

save unacknowledged packets into LC for resending them by local recovery. These

resent packets will be acknowledged by the receivers and then the connections are

woken up as normal. The first caching policy is to buffer all unacknowledged packets.

Thus, an HALR switch may buffer a full window of packets (e.g., 64 Kbytes) in

maximum for a single direction of one connection. Apparently, this policy may

require lots of memory space in the HALR switch and result in high network

bandwidth consumption when resending all cached packets. More importantly, it

requires a packet-copy operation for each unacknowledged segment. It is well known

that the memory copying should be performed as little as possible, especially in

elementary procedures for every packet. This policy may be acceptable in wireless

 13

networks, but it incurs very large overheads in high-bandwidth networks. Thus,

another policy is to save only one unacknowledged data packet (with the lowest

sequence number). Though this policy may force the sender to retransmit a full

window of data packets in worst case, the memory requirements and memory

operations in the switch can be greatly reduced. Finally, the switch can only save

SYNs received during the failover when is less than the initial RTO for SYN

loss. As discussed in Section 4.2, this policy resumes the transmission without waiting

for the initial RTO and it further minimizes the memory requirement by ignoring the

unacknowledged data packets and ACKs.

About caching timing, the HALR switches can save the pass-through packets

when the cluster works well. However, the operations of memory copying can be

significantly reduced if the caching is started before the failover process. Realize that

a failover is usually declared after the heartbeat message losses in a row and exceed a

small threshold (e.g., three losses). The purpose of this strategy is to make sure that

the failover procedure is taken place only when it is necessary; we do not know

whether a heartbeat loss is caused by a system crash or just a temporary high CPU

load that makes the heartbeat unable to be delivered in time. Therefore, we propose to

start the caching before a failure declaration but after at least two heartbeat losses in a

row. Another advantage of this policy is to avoid the caching and resending for idle

connections because only the active packets during the failover are saved.

In summary, in order to achieve the smallest memory requirement and memory

operations, the combination of caching policies need to: 1) start to cache before a

failure declaration, 2) for the packets not passing through the cluster, only save the

packets with the highest acknowledgement number, and 3) for the packets passing

through the cluster, save the lowest unacknowledged packets or save the SYNs only.

 14

3.4 Memory Requirements for Packet Caching

We estimate the memory requirement for HALR by the trace-based simulation,

which gives us a practical picture of memory requirement. The caching policy is to

buffer two packets (one for data and the other for ACK) per connection in maximum.

TCP stateful tracking is applied to the bi-directional 24-hour packet trace (denoted as

AUCK-4) from NLANR [23] that was captured at the University of Auckland in 2001.

By tracking the sequence/acknowledgement numbers and packet sizes of every active

TCP connections, the maximum memory requirement of HALR can be estimated. In

AUCK-4, the maximum buffer size is 792 Kbytes and the average size is 305 bytes

per connection.

In practice, network traffic is time and link dependant and it is impossible to

measure memory overheads by all traffic mixes. For example, suppose that the packet

sizes for data and for ACK are 1,514 bytes and 64 bytes on a single connection. For

caching 10,000 active flows, HALR will need to save 15.78 Mbytes. However, we

believe that the memory requirement is quite likely to be much smaller when the

HALR switch only saves the packets of specific connections, like the Top-100 heavy

hitters. Finally, consider a high-end HA cluster for protecting a web site whose setup

connection rate is 10,000 conn/sec and is 100 ms. If only the SYNs received

during the failover are cached, the memory requirement in this case is roughly equal

to 64 Kbytes, which is not a concern for modern network equipments.

 15

Chapter 4

OBSERVATION: INFLUENCES OF HALR ON TCP BEHAVIOR

In this section, we discuss the influences of introducing HALR into an HA

cluster. Besides eliminating unused flow time (UFT), HALR may result in different

behaviors of congestion control under some particular circumstances and thus affect

the performance significantly.

4.1 Timeline around a Failover Event

Figure 6 illustrates the connections arrive around a failover process. Let t be the

time instance of the timeline in Figure 6. Consider the following scenario: when t = t2,

a failover event occurs, and the process is finished at t = t3, resulting in a of

(t3–t2). Also, t1 is defined as “one normal flow completion time before the failover

begins”. On the timeline, the flows getting through the HA cluster could be

categorized by the arrival time of their first SYN packet, tarrival, as following:

• Case 1: Flow ended without affected by failover. If tarrival < t1 or tarrival > t3,

the completion of the flows would not be postponed, that is, all flows arriving

before t1 or after t3 will finish sending all segments within a normal

completion time.

• Case 2: Data-packet loss due to failover. For the flows whose SYNs arrive

between the time t1 and t2 (t1 < tarrival < t2), i.e. less than one flow completion

time before the failover event happens. The packet transmission would be

interrupted before their termination.

 16

• Case 3: SYN loss due to failover. For the flows that their SYNs arrive between

the time t2 and t3 (t2 < tarrival < t3), i.e. during failover period, the SYNs would be

lost.

Based on whether the flow completion is delayed by the failover or not, the

flows belonging to Case 1 are called “normal flows” and the flows in Case 2 and Case

3 are called “abnormal flows”. We use and to indicate “normal flow

completion time” and “abnormal flow completion time”, respectively.

Figure 6. Timeline around a failover event

4.2 Analysis

First, we discuss the influences of introducing HALR on the flows belonging to

Case 2. When > RTO (e.g., 1.5 sec), TCP flows using TCP Reno, NewReno,

and SACK could not avoid a timeout event. And, all the three variants employ the

slow-start algorithm after timeout events. In this case, HALR can eliminate UFT by

triggering the packet transmission before a timeout. Furthermore, note that two

consecutive timeouts can result in performance degradation significantly and should

be avoided. As shown in Figure 7, besides the idle period from the exponential

back-off algorithm, after two consecutive timeouts, cwnd will be set as one and

slow-start threshold (ssthresh) is set as two segments by the equation: ssthresh =

max(cwnd/2, 2). As a result, after two packet transmissions, the sender enters the

 17

congestion avoidance mode and cwnd is limited to grow linearly, i.e., roughly one

packet per RTT. As our evaluation results shown in Chapter 7, when HALR is

enabled, TCP can avoid some of the retransmission timeouts that would otherwise be

experienced. On the other hand, if < RTO, even HALR resends 3-duplicate

ACKs to the Reno sender, multiple packet losses within a window of data could still

result in a timeout. Instead, for NewReno, HALR can trigger a fast retransmission and

then partial ACKs received during fast recovery recover the lost packets without a

timeout. Furthermore, HALR resending the unacknowledged packet to the NewReno

receiver can accelerate the recovery from multiple packet losses.

Next, we discuss the impact of HALR on the flows belonging to Case 3. The

initial cwnd is one and the initial RTO for SYN is usually set to 3 sec. Therefore,

different from the flows of Case 2, when a single timeout occurs for a SYN loss,

ssthresh is set as two. Furthermore, note that even with a small (say 100 ms),

the retransmission of a SYN loss must be triggered by a lengthy timeout (say 3 sec).

Figure 8 shows that, with HALR, the flow resumes its transmission without waiting

for a lengthy timeout. More importantly, the sender still remains in the slow-start

mode that increases cwnd exponentially. In contrast, the flow without HALR increases

cwnd linearly. Thus, if possible, the initial timeout for a lost SYN should be avoided,

especially for short flows.

 18

Figure 7. Congestion Window Evolution for Case 2: Data Drop Flows

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13
Time (sec)

HALR

no HALR

C
w

n
d

(s
eg

m
en

t)

Figure 8. Congestion Window Evolution for Case 3: SYN Drop Flows

 19

Chapter 5

MODELING FAILOVER FLOW COMPLETION TIME

In this section, we extend existing analytical TCP Reno flow models on transfer

latency for both short flows [24] and long flows [25] to predict the effects of different

failover times and the improvement by the HALR scheme. Table I lists the parameters

used in the following discussions on the flow models.

Table I. Parameter list for modeling

Notation Description Value
Lsim The length of evaluation 15 sec (t = 0–15)

Tfailover Failover time 50 ms–12 sec

p Data segment loss rate 0.1%

ps SYN packet loss rate 0.1%

To Initial timeout for data segments 1.5 sec

Ts Initial timeout for SYN packets 3 sec

R Average RTT 100 ms

D Data segments in one flow D = 9 for short,
1000 for long

W Initial congestion window size 1

Wmax Max congestion window size 64

5.1 Additional Time Delay from a Failover

Through extending the modeling in [24, 25], we are capable of obtaining the

abnormal latency, . The main idea is that when a connection encounters a failover

event, it would be postponed by an additional delay. In Case 2, the additional delay is

a series of timeouts , while in Case 3, the additional delay is a series of . The

notation is used to denote the Additional Delay of a specific flow incurred

 20

from the failure event, given the failover period encountered by a specific flow, .

Note that T is the RTO value when flow interruption happens. On the other hand,

 could be computed as the duration between the flow interruption time point

(first packet drop due to failover) and the time point of failover termination.

To compute the of a connection, assume that there are totally x times of

timeouts triggered by a failover event, then the time period of the additional delay is

equal to a series of timeouts. , while is

the minimum number satisfying: . However, if HALR is

deployed, the delay incurred by a failover is not any more. Instead, the flow

protected by HALR is simply delayed by , which is shorter than ;

namely, an UFT is eliminated.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0 1 2 3 4 5 6 7 8 9 10 11 12

Flow down time (sec)

UFT(SYN Drop)

UFT(Data Drop)

U
nu

se
d

F
lo

w
 T

im
e

(s
ec

)

Figure 9. Unused Flow Time vs. Flow Down Time

Moreover, when HALR is not deployed, UFT can be directly computed from the

timeouts and the down time experienced by the flow: .

 21

Namely, UFT is equal to a series of timeouts minus . Thus,

. Figure 9 further shows that UFTs have a “sawtooth” effect.

5.2 TCP Short Flow Models

In [24], the latency (flow completion time) of a single normal flow was modeled.

The completion time is composed of two parts, and . Namely, .

 represents the connection establish time, while is the average time needed for

sending m data segments with an initial congestion window size w. The could be

computed recursively by the equation, . For example, consider

sending 3 data segments (= 3) and w is equal to 1, the latency would be

 and each component is computed as listed below.

Where denotes the average RTT, and represent the initial timeout value

for data segment and SYN packet, respectively. The is the drop/loss rate of

data (SYN) packets and .

For Case 2 in Figure 6, consider a flow with segments to transfer, assume

that there are i packets arrive on a specific flow before the failover begins, but the

flow hasn’t been completed yet, that is, i < . In this case, subsequent non-SYN

packets will be lost continuously until the failover succeeds. The belonging to

Case 2 could be computed through Eq. (1) for not deploying HALR and Eq. (2) for

deploying HALR.

 22

 (1)

 (2)

In Eq. (2), we define the time required to locally resend the cached packets by an

HALR switch as . Assume is a small delta when compared to and and

it can be ignored.

For Case 3, when there are flows trying to send SYNs to the servers during the

failover, the SYNs would be lost continuously. After the failover, the retransmitted

SYNs will be accepted and pass through the cluster. of Case 3 could be computed

through Eq. (3) for not deploying HALR and Eq. (4) for deploying HALR.

 (3)

 (4)

5.3 TCP Long Flow Models

Note that the flow models mentioned above only cover the slow start phase of

TCP connection. Also, the complexity grows exponentially when the number of total

segments increases since all loss conditions need to be considered. Thus, the

long-flow modeling is necessary to complement the short flow model. In [25], the

total latency of a TCP long flow is evaluated as a function of packet loss rate ,

transfer size , and average RTT, . The basic equations of long flow modeling are

listed below.

 23

Similar to the above short flow models, the expected latency for long flows is

composed of the expected time of connection establishment phase and the

time to transfer data segments . The data transfer part of long flow, , is

composed of four components:

I) , the expected latency in slow start.

II) In the end of the slow start, packet losses occurs, is the cost for fast

recovery or timeout losses.

III) After loss recovery, the connection enters congestion avoidance phase, the

expected time period in congestion avoidance, , is computed as the

expected segments transferred in congestion avoidance, =

, divided by a steady state throughput equation in [26].

IV) At last, a cost is added to reflect the effect caused by delayed

ack mechanism if w is 1. The cost is equal to 150 ms for MS Windows

platforms and 100 ms for BSD systems.

For Case 2 in Figure 6, if there is no HALR mechanism, we define the affected

data transfer time as . Since we assume that the packet loss always happens in

congestion avoidance phase, the affected flow latency could be modeled by

modifying the expected time to . Thus, the equations for computing

of long flows can be written as following:

 (5)

After a data-packet loss, the connection would enter slow start phase again. The

modified could be evaluated as below.

 24

Assume that there are j packets arrive before the failover begins (j <), there

would be segments left to transfer after a failover, and the method to

obtain the corresponding data segments sent in different phases after failover is quite

straightforward.

Before failover, the number of segments transferred in congestion avoidance is

.

After failover, depending on the total segments left to transfer, there are two

possible conditions of an interrupted long flow: First, the flow finally ends in slow

start; second, the flow leaves slow start phase and ends in congestion avoidance phase.

In the previous case, the number of segments transferred in re-entered slow start phase

is ; and for the latter case, the number of segments transferred in

re-entered congestion avoidance phase is . Similar to the

relationship between and , could be computed as

divided by steady-state throughput, and so on. Without HALR, assume that

is longer than the flow packet inter-arrival time. The modified data transfer latency

 is given here:

On the other hand, if HALR is deployed, the latency could be modeled as below.

Note that although HALR could reduce the probability of timeouts, if >

RTO, the flow with data segment losses still enters slow start. However, if <

RTO, a flow could be restarted by 3-duplicate ACKs or the resent unacknowledged

packets immediately. If HALR is deployed and the flow is restarted by 3-duplicate

ACKs, is the segments transferred in congestion avoidance phase

 25

after failover. Below, two situations are considered separately. Note that HALR

reduces the failover-related time delay to the flow from to .

1. If

 (6-1)

2. If

 (6-2)

For Case 3, the affected latency for long flows is relatively simple. If HALR is

not deployed, the latency could be computed through Eq.(7). Otherwise, if HALR is

deployed, the affected latency equals to Eq. (8).

 (7)

 (8)

 26

Chapter 6

EMPLOYING RATE CONTROL AFTER FAILOVER EVENTS

6.1 Rate Control Motivation

Throughout previous discussions, we consider the case of active/backup clusters

with strings of equal bandwidth. Using this specific setting, the system bandwidth

remains unchanged after failover events. Therefore, the system would have enough

bandwidth to process post-failover flows if a failover is happened. However, in

practice, it is possible to have different bandwidth consumption after failover. For

example, take a look at an active/active cluster, assuming two active strings have

equal bandwidth. Then the capacity of system processing is halved upon link/node

failure. This kind of situation would become even worse for the case of unbalanced

link bandwidth, for example, the bandwidth of active (failure) string is twice as much

of the backup (remaining) string. In these cases, after a failover event, when the

failover flows restart transmitting packets, if the connection establishing rate is at the

same level, it may face a post-failover bottleneck. When a bandwidth bottleneck

exists, the buffer usage would grow up and finally being saturated, resulting in buffer

overflows and therefore packet drops. Those packet drops due to buffer overflow

would cause throughput fluctuations, longer flow completion times, etc. To address

this problem, we employ an adaptive rate control mechanism to allocate a fair share of

aggregate flow rate to each active flow.

When the bottleneck locates at the post-failover cluster node link, an adaptive

rate control mechanism is vital. Such a mechanism could stabilize the transfer rate of

connections passing through the cluster. It could not only reduce the buffer

 27

requirement and ensure flow fairness, but also achieve better user-perceived service

quality.

6.2 Design of Rate Control Scheme

In this work, the window adjustment approach is utilized. According to the

description in [27], the sending rate of TCP flows is determined by their window sizes,

the actual window size is the minimum of congestion window and receiver advertised

window(awnd), min(cwnd, awnd). Therefore, the flow rate could be effectively

controlled by adjusting advertised window. Same as the local recovery mechanism,

the rate control scheme could be employed on LBSes since each LBS has the full

knowledge of when failover period begins and ends. As Figure 10 shows, a rate

control module is attached to LBSes.

With the rate control module in hand, the next question would be: when to

trigger the rate control? In order to deal with the potential bandwidth bottleneck after

failover, the rate control module is activated upon receiving failure alert, until receive

the link recovery notification of previous failed string. During this time period, a

modified window value is computed periodically and used as an upper limit of

receiver’s advertised window size for active pass-through flows. At the end of each

pre-defined time interval, the feedback value is generated. For each incoming ACK

packets, if the advertised window size exceeds the value computed by LBS, the

receiver's advertised window would be reduced to the computed feedback value by

modifying receiver advertised window field in this ACK packet.

 28

Figure 10. The integration of Rate Control Module on LBS

In the rate control module, the main operations could be divided into window

computation and window update, the detail of window computation and update are

described in the following section.

6.3 Rate Enforcement Method

When rate control is activated, a window modification function is carried out to

pose a limitation on the pass-through flows. The window adjustment function is

shown as below:

 (9)

 (10)

Where is the computed window feedback value calculated

at the end of nth interval, and will take effect during n+1th interval. In Eq(9),

means the granularity of time interval, is round-trip time, is an adjustable

parameter to add a weight to the monitored data during the latest monitoring interval,

which is set to 1 by default, and is the total number of currently active

 29

connections. is the total number of bytes received during the estimating

time interval , and represents total number of bytes that the cluster

string is capable of processing over the interval . Which could be computed as

link bandwidth × . The utilization factor is used to represent the target

bandwidth utilization ratio (e.g. 95%).

Note that for all active connections, the same window feedback value is

computed. Therefore, LBSes do not have to maintain per-flow state information. Also,

in Eq(10), the term is used as a lower bound of window feedback. If the

computed feedback value is lower then the configured lower

bound, the actual window feedback would be set as . The main purpose of

this control mechanism is to avoid a computed tiny window from taking effect, which

may be severely harmful to the sending rate.

 30

Chapter 7

SIMULATION RESULTS

7.1 Simulation Configurations

To prove the effectiveness of proposed mechanisms, the Berkeley’s network

simulator ns-2 [28] is used to simulate the different scenarios under active/active and

active/backup HA Cluster modes. The general topology is depicted in Figure 11,

which is the dumb-bell topology.

Figure 11. Simulation topology

We use 3 nodes, R1, N, and R2, to simulate an HA Cluster. In the HA cluster, R1

and R2 are boundary LBSes, while N represents cluster nodes. Local recovery and

window control modules are implemented by extending ns-2 queue object in LBS

nodes. The dropping policy of all buffers is DropTail. Note that the HA cluster is

 31

deployed close to the destination nodes, D0 to Dn-1. For simplicity, single direction

data transfer (left to right) is assumed.

7.2 Analysis on Improvements of HALR

In this section, we will use simulations to illustrate some of the influences and

validate our analysis in Section 4.2. Note that an active/backup cluster with equal

bandwidth strings is considered throughout this section.

7.2.1 Simulation Topology of HALR

In the topology depicted in Figure 11, the HA cluster link is shared by TCP

flows originated from TCP source nodes, S0 to Sn-1. The experiments are carried

for short flow and long flow transfers. The flow transfer sizes are 10 and 1,000

segments for short flows and long flows, respectively. The maximum segment

size is set to 1,460 bytes. TCP Reno, NewReno, and SACK with delayed ACK

mechanism are adopted in our evaluations. The dropping policy of all buffers is

DropTail. The buffer size of the gateway is set to be large enough to prevent

buffer overflow.

The failovers on the topology are simulated by taking down the

pass-through string during failover periods. At time = 2 sec, two links in the HA

cluster are brought down to simulate the cluster failure and the failover

procedure. is the experiment parameter, which ranges from 50 ms to 12

sec.

7.2.2 Failover Time vs. Flow Completion Time

Figure 12, Figure 13, and Figure 14 shows the flow completion times for

transferring 10 segments under different flow arrival times. Since for 10

 32

segments is about 0.6 sec, the flows arriving between 1.4 sec and 2 sec belong to

Case 2. For the flows arriving between 2 sec and (2 +) sec, they belong

to Case 3.

From Figure 12 to Figure 14, we can see that the flows protected by HALR

are less harmed by a failover, while raw TCP flows have to pay the cost of UFTs.

As expected, Figure 14 shows that without HALR, the flows of Case 3 have to

wait for lengthy timeouts for retransmissions. It indicates even a small

is achieved, without HALR, the flows belonging to Case 3 increase its latency

from 0.6 sec to 4.01 sec. On the other hand, the HALR-protected flows resume

transmission after a 500-ms failover. The resulting values are between 800

ms and 1.9 sec.

In Figure 13, a small group of flows (arriving at between 1.8 sec and 2 sec)

without HALR have latencies about 10 sec, (namely, the derived from

 is = 9 sec), while the flows with HALR keep the completion

times around 4 sec. The improvement of HALR becomes more obvious in Figure

14 that 40% of the incoming flows during the failover wait for an additional 9

sec to retransmit and the other flows wait for 3 sec. By contrast, with HALR

only depends on . Furthermore, in Section 7.3, through modeling analysis,

we will show that less than or close to 3 sec is a boundary for a good

failover time. The test results here are consistent with our analysis.

 33

Figure 12. Flow completion times vs. flow arriving time (failover = 0.5 sec)

Figure 13. Flow completion times vs. flow arriving time (failover = 3 sec)

Figure 14. Flow completion times vs. flow arriving time (failover = 5 sec)

 34

7.2.3 Failover Time vs. Retransmission Timeout

Figure 15, Figure 16, and Figure 17 shows the retransmission timeout

distributions of the flows (1000-segment) belonging to Case 2 under a range of

failover times (50 ms – 12 sec) with different TCP implementations. In each pair

of bar with the same failover time, the left one is the result with HALR and the

one on the right side is without HALR. First, we find that when HALR is

enabled, TCP can indeed avoid some of the timeouts that would be experienced

if without HALR, especially in NewReno and SACK with < 1 sec.

HALR also avoids some of consequent timeouts which make ssthresh become

two segments when = 3 sec. We notice that the improvement of HALR

for NewReno is more than that for Reno. This is because if multiple packets are

lost in one congestion window, Reno has a higher probability to cause sender

timeout which can not be eliminated by HALR. Moreover, with SACK options,

the number of timeouts could be further reduced when < 1 sec. The

reason is that upon receiving out-of-order packets, SACK sender is notified with

missing segments and resends them without waiting for a timeout. Finally, when

 > RTO, Reno, NewReno, and SACK have the same behaviors on the

timeout distributions because the major difference between Reno, NewReno, and

SACK only lies on the modification of fast recovery; the three TCP

implementations all employ slow-start after a retransmission timeout.

 35

0

5

10

15

20

25

30

35

40

0.05 0.05 0.1 0.1 0.5 0.5 1 1 3 3 5 5 9 9 12 12

Failover time (sec)

TO=4

TO=3

TO=2

TO=1

D
is

tr
ib

ut
io

n
 o

f
T

O

Figure 15. Number of timeouts of the flows in Case 2: TCP Reno.

0

5

10

15

20

25

30

35

40

0.05 0.05 0.1 0.1 0.5 0.5 1 1 3 3 5 5 9 9 12 12

Failover time (sec)

TO=4

TO=3

TO=2

TO=1

D
is

tr
ib

ut
io

n
 o

f
T

O

Figure 16. Number of timeouts of the flows in Case 2: TCP NewReno.

0

5

10

15

20

25

30

35

40

0.05 0.05 0.1 0.1 0.5 0.5 1 1 3 3 5 5 9 9 12 12

Failover time (sec)

TO=4

TO=3

TO=2

TO=1

D
is

tr
ib

u
tio

n
o
f

T
O

Figure 17. Number of timeouts of the flows in Case 2: TCP SACK.

 36

7.3 Model Validation

The modeling results are compared to ns-2 simulation results to validate the

extended models. Figure 18 and Figure 19 present the relationships between the

 (from 50 ms to 12 sec) and measured by ns-2 simulation and estimated

based on short flow and long flow models, respectively. The modeling results,

including the maximum and minimum values, are depicted by lines; while

simulated latencies by ns-2, including and (normal flow completion time), are

represented by one dot per connection (blue dots for latencies with HALR and red

dots for latencies without HALR).

First, for raw TCP without HALR (the general case of HA clusters), a

= 3 sec (the default value of the pfsync [29]) seems to be a boundary of the

“good-enough” failover times. For example, in Figure 18, when < 3 sec, the

maximum is less than 5.3 sec. However, when = 5 sec, the maximum

becomes 11.2 sec. Thus, if a false failure declaration is possible, it could be inferred

that enforcing a close to or less than 3 sec might be a good balance.

Second, Figure 18 shows that HALR effectively reduces the for all failover

times. This result is advantageous to the delay-sensitive applications, such as WWW.

Note that the maximum of raw TCP is affected non-linearly by the characteristics

of doubling TCP timeouts. With HALR, the maximum grows linearly when

 increases because the sawtooth effect of UFT is eliminated. In this way, the

latency over a failover is no longer bounded by RTO values but . Therefore,

through HALR, TCP flows could take full advantage of small failover times.

Otherwise, for a HA cluster without HALR, the end results of TCP performance

around a failover seemingly diminish the efforts of achieving accurate state

replication (even for short flows) and a very low failover time.

 37

We find that the values from short-flow modeling and from simulation have

close agreement with each other. However, in Figure 19, although the results of long

flow modeling follow the similar trend as in Figure 18, some inaccuracy is observed

between the simulation results and modeling estimation. This is mainly due to the

effect of ssthresh =2 problem described in Section 4.2. The gap separating ns-2 flow

completion times into two major groups, representing the difference between Data

drop flows with or without consecutive timeouts, or SYN drop flows with or without

single timeout.

Figure 18. Short flow model validation

 38

Figure 19. Long flow model validation

7.4 Improvements of Post-Failover Rate Control

During the simulation of rate control mechanism, an active/active cluster is

considered. And various string bandwidth ratios are tested. Cluster failover is

simulated by halving (or proportionally cutting) system bandwidth and dropping

active flows on failed string. We carried an extensive set of experiments with various

parameters settings; however, unless stated otherwise, the basic configuration is used

as described as the following.

At the beginning of simulation, two strings are both actively processing flows

passing through them. The TCP flows are distributed by LBSes into 2 groups; each is

processed by one active string. For each group, there are 50 TCP flows; each is

transferred between one source-destination pair, that is, S0 to D0 or Sn-1 to Dn-1,

respectively. From time=0, for each 250msec, a new connection is established from

each group. Again, MSS=1460 byte, and each flow transfers 3000 packets in total.

 39

The link capacity is set to 100Mbps for each string and other network links.

Therefore, for an active/active cluster with equal string bandwidth, the system

capacity would fall from 200Mbps to 100Mbps upon failover. Since the main focus

here is the bandwidth bottleneck issue after failover events. In this section, a typical

failover period, 3 sec, is chosen for illustration. At time t = 5 sec, a failover starts, and

the failover ends at t = 8 sec. It is also validated through other simulation sets that

using different failover times will not affect the macroscopic system behavior, such as

aggregate throughput evolution, after failover events.

For the bottleneck buffer size, the buffer size limit for router R1 is set to 750

packets, which is about the size of network bandwidth-delay product (for 100Mbps

link) unless stated otherwise.

7.4.1 Throughput Analysis

We define the string experiencing failure as failure string, and the other

string as remaining string. As described in previous section, the failover period is

between t = 5 sec and t = 8 sec. During this time period, although newly

connections arriving at the cluster would be directly assigned to the remaining

string by LBS, the active connections on failure string would experience

temporary service interruption.

 40

Figure 20. Throughput vs. time: without rate control

Figure 21. Throughput vs. time: with rate control

 41

In Figure 20 and Figure 21, the aggregate throughputs vs. timeline with and

without post-failover rate control are depicted, respectively. The total throughput

is composed of those generated from passed flows and failover flows. Passed

flows represent the flows without experiencing failover during their lifetime.

While the failover flows are those assigned to the failure string, and were

interrupted when failover happens. After failover, they are switched over to the

remaining string.

If there is no post-failover rate control, although the aggregate throughput

after failover remains at the level of available bandwidth, the fluctuations are

apparent on total throughput due to the active flows, including those haven’t

completed when failover happens and those arrive after failover, compete for

insufficient bandwidth. In this case, a proportion of post-failover transfers require

longer times for completion.

On the contrary, if post-failover rate control is deployed, although the total

throughput after failover may be slightly lower due to the under estimation of

window adjustment functions, the aggregate throughput has better smoothness.

The smoothness comes from the explicit allocation of bottleneck link bandwidth

achieved by post-failover rate control. From Figure 21, it could be inferred that

through rate control mechanism, better per-flow fairness is achieved. Also, by

mitigating the problem of bandwidth competition, the bottleneck buffer size is

reduced, as we will present in later sections.

 42

Figure 22. Aggregate throughput comparison (a) during simulation (b) zoomed-in.

 43

7.4.2 Per-flow Fairness

To further illustrate the fairness characteristic, we use the metric “per flow

bandwidth utilization ratio” to measure the fairness between each active flow.

Since there are number of TCP flows during simulation period, only 10 flows

within 100 flows are sampled and plotted. The simulation results with and

without post-failover rate control are depicted in Figure 23 and Figure 24,

respectively.

From Figure 23, it is observed that due to the resource contention, some

flows, especially for those begin after failover, fail to attain their fair share of

bandwidth until previous active flows finish their transfers. There are also some

throughput drops followed by throughput bursts during the simulation period,

representing that some flows experienced packet loss thus reducing their sending

rate, therefore flow completion are postponed. On the other hand, in Figure 24,

the throughput share after failover distributed by rate control is illustrated. In this

figure, it could be seen that the throughput shares among flows are fairly

allocated. Even for newly arrived flows after failover event, they would not grow

over existing flows. By explicitly allocating available bandwidth among total

active flows, a reasonable bandwidth usage is achieved. As a consequent, for

every flow, no throughput degradation due to packet loss is observed during

simulation period.

 44

Figure 23. Per flow fairness: without rate control

Figure 24. Per flow fairness: with rate control

 45

7.4.3 Bottleneck Buffer Size

From the aspect of router buffer size on bottleneck link (R1 N), the results

with rate control and without rate control are shown below. In general, if

post-failover rate control is deployed, the buffer size requirement would be much

lower, which is the result of proper bandwidth adjustment. However, if there is

no rate control, buffer size could not be effectively controlled and finally being

saturated. A buffer with high usage would result in longer queuing delays. Also,

packets drops due to buffer overflow are incurred.

In Figure 25, the bottleneck buffer limit for LBS node, R1, is set to 1500

packets, while in Figure 26, the buffer limit is set to 750 packets, which is about

twice or the size of network bandwidth-delay product for 100Mbps link. When

there is no protection of rate control, because the sending rate exceeds available

bandwidth, buffer grows fast and overflows will eventually happen. It is even

worse in the case of smaller buffer. For example, when buffer limit = 750

packets, the buffer overflow occurs more frequently than the case of 1500-packet

buffer size. There are eight surges (rather than 3 surges) of buffer overflows

during a 20-second post-failover transferring period. However, for both figures,

by employing rate control, the buffer requirement is restrained well with a

maximum level of 600 packets.

Note that, if we utilize even larger buffer size, such as a limit of 3000

packets; although the saturation of the buffer could be postponed, it could not be

avoided. Moreover, a large amount of buffered packets would result in even

longer queuing delays. And it may possibly trigger retransmissions falsely for

packets still buffered in queue, thus aggravating the consumption of the

bottleneck buffer.

 46

Figure 25. Bottleneck buffer size (buffer limit= 1500 pkts)

Figure 26. Bottleneck buffer size (buffer limit= 750 pkts)

 47

In summary, combining with the figures in previous sections, the proposed

post-failover rate control mechanism not only smoothes the aggregate throughput

when a post-failover bottleneck exists, but also achieves stable buffer

requirement and per-flow fairness in terms of bandwidth utilization. Meanwhile,

compared to the non-rate controlled flows, a similar level of system throughput

is preserved.

 48

Chapter 8

DISCUSSION & CONCLUSION

In this thesis, a new scheme, called HALR, has been proposed to improve the

TCP performance over the failover events in the HA cluster. HALR caches TCP

packets selectively and resends them locally after the failover is finished. The scheme

keeps the end-to-end TCP semantics and is compatible with existing TCP

implementations. Furthermore, analytic models for TCP completion times were

developed to characterize the effects of failover times and the effects of the proposed

method. Analytical estimations were validated by ns-2 simulation experiments.

The investigations lead to a number of main conclusions. First, using modeling

results and ns-2 simulation, we show that HALR improves the end-to-end TCP

performance over a failover by minimizing the unused flow time. Especially, HALR

is useful for the short flow arriving during the failover process to resume its

transmission after the failover immediately without waiting for a lengthy RTO (3 sec).

Second, we find that TCP with HALR can avoid some of the retransmission timeouts

that would be experienced if without HALR. Third, we find that if a false failure

declaration is possible, a failover time close to or less than 3 sec might be a good

balance. Finally, by the simulation on real packet trace, we show that HALR is a

lightweight solution on memory requirements. Furthermore, if only the SYN packets

received during the failover are cached, the memory requirement can be minimized.

After failover events happen, in order to prevent the flows to suffer from potential

system bandwidth bottleneck, the post-failover rate control mechanism is proposed.

This mechanism utilizes window adjustment method to allocate fair share bandwidth

to all active connections in system. An extensive set of simulations are carried to

 49

evaluate the effects of post-failover rate control under different scenarios. Through

simulation results, by triggering rate control upon failover, the system bandwidth is

fairly allocated to flows. Also, the bottleneck buffer size is reduced, eliminating the

occurrence of packet drops. Finally, this mechanism ensures smooth transfer for

pass-through flows encountering post-failover bottleneck.

 50

REFERENCES

[1] J. Wolfgang and T. Sven, "Analysis of internet backbone traffic and header
anomalies observed," in Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement San Diego, California, USA: ACM, 2007.

[2] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate, "End-to-end WAN
service availability," IEEE/ACM Transactions on Networking (TON), vol. 11,
pp. 300-313, 2003.

[3] V. Jacobson, "Congestion avoidance and control," ACM SIGCOMM Computer
Communication Review, vol. 25, pp. 157-187, 1995.

[4] P. Lewis, "A High Availability Clustering Solution," Linux Journal, vol. 1999,
1999.

[5] J. Padhye and S. Floyd, "Identifying the TCP Behavior of Web Servers," ACM
SIGCOMM, 2001.

[6] V. Paxson, "Automated packet trace analysis of TCP implementations,"
Proceedings of the ACM SIGCOMM'97 conference on Applications,
technologies, architectures, and protocols for computer communication, pp.
167-179, 1997.

[7] J. C. Hoe, "Improving the start-up behavior of a congestion control scheme for
TCP," Applications, Technologies, Architectures, and Protocols for Computer
Communication, pp. 270-280, 1996.

[8] F. Kevin and F. Sally, "Simulation-based comparisons of Tahoe, Reno and
SACK TCP," SIGCOMM Comput. Commun. Rev., vol. 26, pp. 5-21, 1996.

[9] S. Floyd and T. Henderson, "The NewReno Modification to TCP’s Fast
Recovery Algorithm," RFC 2582, April 1999, 1999.

[10] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, "TCP Selective
Acknowledgment Options," RFC 2018, October 1996, 1996.

[11] V. Paxson and M. Allman, "Computing TCP’s Retransmission Timer," 2000.
[12] J. H. Hu, G. Feng, and K. L. Yeung, "Hierarchical Cache Design for Enhancing

TCP Over Heterogeneous Networks With Wired and Wireless Links," IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 2, p. 205, 2003.

[13] S. James and M. Glenford, "Link layer-based TCP optimisation for
disconnecting networks," SIGCOMM Comput. Commun. Rev., vol. 33, pp.
31-42, 2003.

[14] M. Ji-Cheol and L. Byeong Gi, "Rate-adaptive snoop: a TCP enhancement
scheme over rate-controlled lossy links," IEEE/ACM Trans. Netw., vol. 14, pp.

 51

603-615, 2006.
[15] D. Martin, R. H. Thomas, and M. Jeff, "Experience with "link-up notification"

over a mobile satellite link," SIGCOMM Comput. Commun. Rev., vol. 34, pp.
93-104, 2004.

[16] H. J. Byun and J. T. Lim, "Explicit window adaptation algorithm over TCP
wireless networks," Communications, IEE Proceedings-, vol. 152, pp. 691-696,
2005.

[17] W. Huan-Yun, T. Shih-Chiang, and L. Ying-Dar, "Assessing and improving
TCP rate shaping over edge gateways," Computers, IEEE Transactions on, vol.
53, pp. 259-275, 2004.

[18] A. James, O. Michel, and Y. M. Delfin, "A self-regulating TCP
acknowledgment (ACK) pacing scheme," Int. J. Netw. Manag., vol. 12, pp.
145-163, 2002.

[19] A. James, O. Michel, Y. M. Delfin, and Y. Zhonghui, "Improving network
service quality with explicit TCP window control," Int. J. Netw. Manag., vol.
11, pp. 169-188, 2001.

[20] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, "Explicit window
adaptation: a method to enhance TCP performance," Networking, IEEE/ACM
Transactions on, vol. 10, pp. 338-350, 2002.

[21] Y. Matsushita, T. Matsuda, and M. Yamamoto, "TCP Congestion Control with
ACK-Pacing for Vertical Handover," IEICE TRANSACTIONS on
Communications, vol. 90, pp. 885-893, 2007.

[22] K. Shrikrishna, K. Shivkumar, B. Prasad, and P. Bob, "TCP rate control,"
SIGCOMM Comput. Commun. Rev., vol. 30, pp. 45-58, 2000.

[23] "NLANR PMA Trace," http://pma.nlanr.net/.
[24] M. Mellia and H. Zhang, "TCP model for short lived flows," Communications

Letters, IEEE, vol. 6, pp. 85-87, 2002.
[25] N. Cardwell, S. Savage, and T. Anderson, "Modeling TCP latency," in

INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, 2000, pp. 1742-1751
vol.3.

[26] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, "Modeling TCP Reno
performance: a simple model and its empiricalvalidation," Networking,
IEEE/ACM Transactions on, vol. 8, pp. 133-145, 2000.

[27] W. R. Stevens, "TCP/IP illustrated (vol. 1): the protocols," 1993.
[28] "ns-2," http://www.isi.edu/nsnam/ns/.
[29] R. McBride, "Firewall Failover with pfsync and CARP."

